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A. Pnueli
Weimnn Institute, Rehovot , Israel

ABSTRACT

The article describes the compilation of a program

specification written in the Very High Level nonprocedural

MODEL language into an object (PL/I or Cobol) procedural
language program. :Nonprocedural programming languages

are descriptive and devoid of procedural controls. They

are therefore easier to use and require less programming

skills than procedural languages. First, the MODEL lan-

guage is briefly presented and illustrated. An important

phase in the compilation process is the representation

of the specification by a dependency graph denoted as

arrayT graph which expresses the interdependency between

statements. Two classes of algorithms which utilize this

graph representation continue the compilation process.

The first class checks various completeness, non-ambiguity

nd consiztency aspects of the specification. Upon de-

*Research supnorted by the Information S!ystems rocram,
Office of Naval Research, Contract Nc. HOOO04-I' -C-O I6.
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tecting any faults the system attempts some automatic

correcting measures which are reported to the user.

Alternately when no feasible corrections are possible it

reports an error and solicits a user modification.!.,The

second class of algorithms produces a general design of

an object program in a language independent form. Finally

P!/I or Cobol code is generated, based on the general

design.

The algorithms are described informally. A number cf

less important algorithms are omitted, including the

algorithms used to generate PL/I or Cobol code based on

the intermediate design. A complete documentation of

the system is available in the references.

Index terms: Nonprocedural languages, Very High

Level Languages, Program Specifica-

tions, Compilers and Generators,
r

Automatic Program Generation, Data-

flow Languages.

Computing Reviews Categories: 4.12 and 4.22.
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I. INTRODUCTION

This paper describes the process of compiling a pro-

gram specification, written in the very high level non-

procedural MODEL language, into a program in a conven-

tional high level procedural language, such as PL/I or

Cobol.

Nonprocedural languages have been proposed for over

a decade as more natural, more reliable and easier to use

than procedural languages (Tessler and Enea, 1968;

Leavenworth and Sammet, 1972; Ashcroft and Wadge, 1977).

The advantages in use of the MODEL nonprocedural language

and its processor have been discussed in a previous paper

(?rywes, ?nueli, and Shastry, 1979). Some of the consider-

ations reported there are repeated here very briefly. A

nonprocedural language has no need for the procedural

and control constructs of a conventional Drocedural

language and the order of presentation of the language

statements has. no silficance. The user.of a nonprocedural

language concentrates only on describing data, independently

of the medium of the data (i.e. memory, data base or any

other external storage), and on composing equations that

define output variables in terms of input variables.

Consequently, the user concentrates on expressing his pro-

gram in a way which is most natural for the given prob-

lem, and is not distracted by the. need to design



efficient representations and algorithms. Within a

reasonable framework the task of design for efficiency is

automatically undertaken by the system. A nonprocedural

specification is therefore much shorter than the equiva-

lent procedural program. The computer proficiency re-

quired of the user is also reduced through the elimin-

ation of the procedural design and considerations of

efficiency. The aggregate of descriptive statements is

unlike a procedural program; therefore it is inappropri-

ate to refer to is as a "program." Instead, we use the

word soecification. The programs produced by the MODEL

processor are more reliable. The task of debugging is

carried out on a much higher level, verifying only the

correctness of the specifications, and hence is much

simpler than debugging a procedural program.

Previous developments of processors for nonprocedural

languages have taken the interpretation route. While this

approach can ensure flexibility and generality of the non-

procedural language, the resulting system usually suffers

a decrease in efficiency when executed on a conventional

machine. Also, the diaRcstic capability of an interpreter

is usually poorer in that very little preliminary analysis

is attempted. Therefore, in our development of the MODEL non-

procedural language and processor, we have taken the compil-

ation route, translating a specification into a con-

ventional high level language. Also we Inave ineor-

porated the canability for handling data bases and in-



put/output required for realistic applications. Due to the

nature of the nonprocedural language, and the need to sched-

ule program events, the process of compilation in this case

is unlike that of conventional procedural languages.

Several of the more important problem areas in the design

of the MCDEL orocessor are briefly described below.

A specification in the MODEL language consists of two

types of statements: data description statements which

describe the structure and attributes of variables, and

ecuations defining some variables (the dependent variables

of the equations) in terns of other variables (the in-

dependent variables of the equations). Some of the varn-

L ables are designated as source variables and some as tarcet

variables. The role of the specification is to describe the

transformation between source and target values. Typically,

both source and target variables are located in external

files.

Consider now the basic problems of translating such

a specification into a conventional program:

Unordered nature of the specification: The order of

the statements in the specification is not significant.

Consequently, it is necessary to analyze the specification

globally to determine all the dependencies between vari-

ables and equations which imply a partial ordering of the

events in the program. Thus, an equation for defining a



variable can be calculated only when all the independent

variables, i.e. variables appearing on the right hand

side of an equation, are already defined. Consequently

the calculation of an equation should be preceded by the

calculations of all the equations defining the indepen-

dent variables of this eouation. Similarly, the in-

structions for reading the value of a variable which re-

sides on secondary storage should precede any equation

for which this variable is an independent variable. The array

oraph representation of the specification shows this

precedence order between statements. This graph is also

analyzed in order to detect circular dependencies, and then

used to synthesize the program by translating statements

in an order consistent with the precedence constraints.

Handlinz input/outout: The user descrintion of data

is independent of the medium of the data and whether its

renresentation is internal (in core) or external (secondary

storage). It is necessary then to determine, based on file

descriptions or the dependencies between variables and

equations, whether the data is on an input/output device or

in main memory, and if necessary, schedule the associated

input/outnut instructions.

Analysis o3f rnc'Itlve. e'uato ns and locc design:

Since the language allows structured variables which may be

t ree- structured or arrs, an e-uat4on for such a variable
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defines an aggregate of values. In the case of an equa-

tion defining an array variable, The translation calls

for repetitive calculation of the equation for different

values of the subscripts which explicitly or implicitly

subscript the equation. This imzlies that the translation

will enclose the equation within repetitive loops, which

might be nested if the array is of multiple dimensions.

_n constructing the loops we must perform a deeper anal-

ysis of the interdependency between variables. In the

presence of array variables we may have elements of one

array dependent on elements of another array in a com-

olicated manner, as well as the possibility that one el-

ement of an array may depend on another element of the

same array. These considerations require that the el-

ements of the arrays be computed in a certain order, and

hence impose constraints on the loop design.

Checks and diagnostics: lIn contrast to the situa-

ticn with procedural programming languages, most errors

in a nonprocedural language stem not from coding errors

but from mathematical incompletenesses or inconsisten-

cies. Detected errors must be communicated to the user

in strictly nonprocedural terms (i.e. without referencing

program design considerations). The compilation pro-

cess incorporates methods which resolve the nroblems
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automatically and report the corrections to the user, as an

aid in explaining the respective detected problems. This

methodology of program checking and communication with

the user goes beyond today's compilers of procedural

languages.

Efficient use of memory: As discussed earlier, in

specifying the data description statements, the user

chooses the description which is most natural 5nd

appropriate for the problem. This choice

does not necessarily lead to the most efficient data

representation. It is up to the processor to map the

conceptual structure onto a physical memory layout. In

this mapping it is necessary to analyze the possibility

of sharinc- of storae bydifferent structures or even

by different parts of the same structures. This is

particularly important for large external data bases,

where it is frequently mandatory to bring into memory

at most one or a few records at a time.

The discussion in this paper follows the flow of con-

trol in the MODEL system. The input to the system is

a program specification in the MODEL language. The

syntax and semantics are briefly described in Section 2

together with two examples, which are used through the

paper to illustrate the compilation process. The
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language processor has five major phases:

1) Syntax analysis

2) Representation of the specification and the de-

pendencies between its elements by an array graph. This is

described in Section 3. An array graph is a compact repre-

sentation of a large structured graph and is used here to

represent the dependencies. The basic algorithms of

Graph Theory can, under appropriate restrictions, be

carried out on the array graph as well.

3) Consistency checking and correction of the speci-

fication. This is described in Section 4. The algorithms

in this phase detect missing definitions, resolve ambiguities

in naming of variables and verify consistency of dimen-

sionality, range and subscripting. Many of the inter-

actions with the user, utilizing nonprocedural terms,

occur in this phase.

4) Generation of a flow chart for the program. The

general design of a program is described in Section 5.

These algorithms sequence the instructions implied by the

data structures and equations. Iterations are designed to

reduce memory and time costs. Program optimization is

based on the notion of maximizing the scope of the iter-

ations, particularly those that incorporate input or output

operations.

5) The generation of PL/I or Cobol code is based on
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the design generated in phase 4

The first and last phases, which we consider less

novel, have been omitted from our discussirn. The present

paper is based on an operational version of the AODFL

system which is described in detail in a reference (MODEL

Program Generation: System and Programming Documentation,

1980). Ongoing research on several improvements is described

in Section 6.

.... 6."mt



2. THE MODEL SPECIFICATION LANGUAGE

A specification in the MODEL language consists of an

unordered set of statements. The statements in the lan-

guage are of two types: data description statements and

equations which we call assertions. The daca description

statements describe the structure and attributes of the

variables participating in the specification. The asser-

tions define the values of some variables in term of

other variables. The variables appearing in a specifica-

tion are designated as source variables or target vari-

ables in header statements. The header statements are not

important to the discussion here and are omitted in the

following I . The values of the source variables are con-

sidered to be available on external input files. Target

variables are to be produced on external output or update

files. Target variables may alternately be designated as

interim, to indicate that they need not be retained as

output. The two subsections below describe the syntax of

data and assertion statements resoectively. Two examples

are used to illustrate the composition of these two types

of statements.

2.1 Data Statements

Data in a MODEL specification may be highly struc-

tured. The description of the data structure is tree-

1 Several features that provide additional ease have been
omitted. For a more complete description of the lan-
guage refer to MODEL II User Manual, 1978.

'k__I
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oriented, similar to FL/I or Cobol. The node at the root

of the data structure tree typically represents a file.

A file may be composed of substructures, each of which

may be further composed of substructures, and so on. A

substructure is referred to as the parent of it 3 com-

ponent substructures. The latter are referred to as

descendents. A data structure is visualized as a tree

where substructures form nodes with branches leading to

lower level components. The syntactic definition of data

statements is shown in Figure 1. The < data name > is

the name of a node in the tree. The < node type > in-

dicates a level in the tree. A FILE node type may only

appear at the root of the tree. A terminal tree node is

denoted as FIELD node type. An intermediate node in the

tree which is also the unit of transfer of data between

input/output and memory is of RECORD node type, as in

PL/! or Cobol. A GROUP node type is any other inter-

mediate node in a tree.

The optional < file arguments > describe the computer

media of the data 2 . They are unimportant to the dis-

2 File arguments are necessary for generating a Cobol
Program. For a PL/l program the medium may be specified
in the JCL statements.
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< data statement > = < data name > IS < node type > (<argunents>)

" node type > :FE I GR[OU]P I 'LTfORD] I F[IE]LD+

< argumrents > = < file argurments > I < group/record
arguments > I < field argumnts >

" group/record argzents > : = < inmediate descendent name >
[(< numter of repetitions>)]
[, < immdiate descendent nare >
[(< numter of repetitions >)]]*

The square brackets ( EX] ) denote optionality; when
followed by an asterisk (IX]*) they mean zero or more
repetitions.

+ The node type may be preceded by the key word INT[ERIM]
when the respective-data-strueture-±s target data but
is not needed on an output .medium.

Figure 1 Major Syntactic Components cf Data Statement

P'
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cussion below and will be omitted in the following.

The number of repetitions of a descendant structure

is included as an argument in the statement describing

the parent. If the descendant occurs only once, then the

< number of repetitions > is omitted. If the number

of repetitions varies, then the minimum and maximum

bounds may be specified. Also, unknown number of re-

petitions may be specified by an asterisk (*) in place of

a repetition count 3 . The definition of a variable number

of repetitions is further discussed below.

The field arguments are: data type, size and scale,

with the same meanings these attributes have in PL/l.

They are omitted in the following.

The example in Figure 2 illustrates a business appli-

cation, which characteristically includes input/output.

It consists of processing source sale documents to pro-

duce a monthly sales report. The data statements are in

lines dl to d14. Line dl describes the IN sale source

data. IN IS FILE (INGRP(*)) means that the file IN con-

sists of an unsoecified seauence of repetitions of struc-

3 In specifying an asterisk, the user implies to the sys-
tem a memory allocation scheme in which only a few ele-
ments are retained in memory. This requires primarily
limiting subscript expressions to the form I - K, for the
respective dimension. This point is discussed further in Sec-
tion 2.2. We are currently developing a new version which
wculd perform this task automatically (see Section 6).



15

/* DATA DESCRIPTION OF IN FILE */

dl: IN IS FILE(INGRP(*))
d2: INGRP IS GRP(INREC(*))
d3: INREC IS REC(ITEM#,QUANT)

d4: ITEM# IS FIELD
d5: QUANT IS FIELD

DATA DESCRIPTION OF ITEM FILE */

d6 : ITEM IS FILE(ITEMREC)
d7: ITMREC IS REC(ITEM#,PRICE)
d8: ITEM# IS FIELD
d : PRICE INS FIELD

/* DATA DESCRIPTION OF OUT FILE */

d10: OUT IS FILE(OUTREC(*))

dl: OUTORTTES REC(ITEM#,TOTAL,COST)d12 : ITEM r-I --FIEL D

d13: TOTAL IS FIELD
d4: COST PR FIELD

/* ASSERTIONS FOR DATA PARAMETERS

al: IF END.iNREC(FOREACT4.INREC)
THEN--OINTER. !TE REC = IN. ITEM# (FOREACH. !NREC)

a2 : END. INREC = (IN. ITEM# =-NEXT. IN. ITEM7q#)

/* ASLSERTIONS FOR OUT FILE DATA *

a3: 0UT.ITEM# = ITEM.ITEM#
a4: TOTAL =SUM(QUANT(FOREACH.!NREC), FOR_EACH.iNREC)
a5: COST =PRICE *TOTAL

Keywords are underlined.

Figure 2 MODEL Specification for Producing a Sales Report



tures named INGRP. In line d2, INGRP IS GRP (INREC(*))

means similarly that INGRP is a group consisting of an

unspecified number of INREC structures. Line d3 shows

that !NREC is a RECORD containing information on quantity,

QUANT, of the item sold, identified by ITEM#. The PRICE

of each item is in another source file ITEM (lines d6 to

d9). The target data is a summarized sales report named

OUT (lines d10 to d14). Each record in ""UT contains the

ITEM#, TOTAL, and COST. TOTAL is the sum of all the

quantities (QUANT) of an item of a specific valued ITEM#,

that have been sold. COST is the product PRICE*TOTAL.

This example is further explained in connection with later

discussion of the assertions.

Although data are pictured in MODEL (as in PL/l and

Cobol) as tree structures, it will be more convenient for

the discussion here to refer to data as arrays. There is

a direct correspondence between the tree and array views

of a data structure. For instance, specifying a <number

of repetitions> means that the data structure repeats,

constituting a vector. Generally, a structure may be

viewed as a multidimensional array, where < number of

repetitions > specifications of own or predecessor nodes

in the data tree give the ranges of respective dimensions.

Thus for instance, ITEM# and QUANT in the IN file are

viewed as two dimensional arrays. The first, more
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significant dimension corresponds to repetitions of INGRP

and the second dimension corresponds to repetitions of

INREC. Therefore, we refer in the following to the

< number of repetitions > of a node as a range sceci-

fication, and also as the range of the dimension. View-

ing the data as arrays allows referring to a specific

instance of the data as an element of an array which can

be identified by the appropriate indices for each dimen-

sion. For instance ITEM#(nl,n2) denotes the ITEM# in the

n2 th INREC of the nl th INGRP. Element indices are

denoted by free subscript variables that may assume integer

values in the range of the respective dimension.

The range of a dimension may depend on the values of

higher order subscripts. Therefore the range of a dimen-

sion of an array may not have the same value for all higher

order dimension indices. Such an array is not rectangular

and is referred to as a jagged edge array. For exampIe, :iREC
has two dimensions with variable ranges associated with the

repetitions of INGRP and INREC. The number of INREC in-

stances varies from one instance of the parent INGRP to

another. INREC may be Viewed as a two dimensional

jagged edge array, with a row corresponding to each in-

stance of INGRP and the INREC instances corresponding to

elements of the respective rows. Since the number of INREC

instances varies from row to row (i.e. from one INGRP group
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to another), the resulting matrix is not rectangular, but

jagged edge.

Referring to an element through subscripting, and defining

a variable range by use of an assertion are further discussed

below in connection with the use of assertions.

The example in Figure 3 defines testing the primeness

of an integer N, and if prime, the derivation of one divisor
(D!v) of N.T The IN source file (lines dl to d3) contains a

single record with the variable N, and the OUT target file

(lines d4 to d7)contains a single record with N and DIV.

The algorithm evaluates progressively the products

of two integers for the purpose of testing equality to N.

The product of the two integers is represented then by J

(lines d8 to dl0). Note that in line dl0 of Figure 3, J

iz stated to be ITERIM, namely it is target data but the

user is not interested in retaining J. It also means that

J is needed for ease in specifying the algorith'. for test-

ing primeness but is not part of the desired result.

P

4 It is similar to the testing of primeness example used
in a description of the LUCID nonprocedural language
(Ashcroft and Wadge, 1977). The choice of the same ex-
ample should help the interested reader to compare LUCID
and MODEL

L
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/* DESCRI TION OF IN FILE */

dl: IN IS FILE(INREC)
d2: INREC IS REO(N)
d3: N IS FIELD

/* DESCRIPTION OF OUT FILE */

d4: OUT IS FILE(OUTREC)
d5: OUTREC ;_5 7C(N,DIV)
d6: N IS ZJaID
di: DIV IS FIELD

/* DESCRIPTION OF INTERIM DATA */

d8: INT IS GRP(I(*))
d9: I IS GRP(J(*))
d10: J IS INTERIM FIELD

/* ASSERTIONS FOR DEFINING END.I AND END.J *7

al: END.J - (J >4 N)

a2: IF END.J(SUB1 )THEN SUB.I =((J(SUB1) I N)v(SUB=1)))

/* ASSERTION FOR DEFINING J */

a3: IF SUBI > 1
THEN J(SUB2, SUBI)=J(SUB2,SUB1-1)+SUB2+!
ELSE J(SUB2, STJB)=(SUB2+l)**2

7* ASSERTIONS FOR DEFINING VARIABLES IN OUT FILE ./

a4 : IF END.I(SUB2) A

(J(SUB2,SUB1) =,I)
IiEN DIV = SUB2+I

D7ELSE D7J = 'PRT I

a5: OUT.N = IN.N

Figure 3: MODEL Specification For Testing
The Primeness of An integerILj
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2.2 Assertion Statements

Shile the data statements describe the existence

and structure of data to be operated upon, the description

of the transformations applied to the data is given by

the assertions. Rather than give detailed procedural

instructions on step-by-step execution, the user of MODEL

identifies relationships between the variables, from which

the processor deduces The actuai execution sequences. These

relationships are called assertions in MODEL. The build-

ing blocks for assertions include conventional arithmetic

and boolean expressions and more structured operations

such as F-THET-ELSE. This section describes the syntax

and semantics of assertions with The aid of the two ex-

amples in Figures 2 and 3. The focus is on the properties of

soecial variables that de fine parameters of data,

subscripts and functions.

The syntax used for assertions in this naner is the

same as that of computation statements in PL/I. The lan-

guage allows explicit equality relations of the form:

< variable > = < expression >

The variable on the left hand side, the dependent variable

of the assertion, is defined by the expression on the

right hand side. The indenendent variables for this asser-

tion are the variables participating in the defining ex-
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pression on the right hand side. An expression is built

out of variables and constants to which are applied basic

operators and functions. PL/I conventions for constants,

variables and boolean and arithmetic operators are used

in composing expressions. These include the

IF-THEN-ELSE operator whose syntax is:

IF < condition > THEN < variable > = <expression 1>

ELSE < variable > = <expression 2>,

meaning that if <condition> evaluates to TRUE, then

< expression 1 > defines the value of the variable, other-

wise < expression 2 > is used. An assertion defines only

one variable and therefore the same variable name must be

used following the-THEN and ELSE key7words.
5

An assertion statement, though similar in syntax to

an assignment statement in procedural languages, should

be regarded by the user quite differently. The assertion

meaning is identical to the mathematical notion of equiva-

lence between the two sides of the equal sign. Namely

it is an equation. This aspect is basic to the difference

between procedural and nonprocedural languages.

5 An alternative Algol-like syntax: < variable - IF
< condition > THEN < expression 1 > ELSE < exuression 2 >,
is also available. This syntax shows more clearly the
equation quality of an assertion.
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Because of the nonprocedural nature of MODEL, each vari-

able name may denote only one value. Also the "histor-

i-al" values of data, namely those that would not be need-

ed further in a computation must be explicitly repre-

sented by symbolic names. In contrast, procedural pro-

gramining languages allow assigning differing values to

the same variable and "historical" values may be discarded
if not further needed. For instance,an assignment

statement within a loop: X=X+l would make no sense as an

equation. in MODEL it would be necessary to name

each value of X separately. Assume that these

values constitute a vector, with N elements. An element

is denoted by subscripting, X(I). I is the subscript

variable which can take the value of an integer in the range

of 1 to N.0 The MODEL equivalent of the above assignment

statement is the assertion: X(I)=X(I-1)+l.

Both the dependent and the independent variables

should be subscripted by a list of subscript expressions

corresponding to the dimensions of the variables as spe-

cif'ied in the data description. Any integer valued ex-

6 The more general case is where with each dimension we
associate a lower limit zd, an upper limit ud and an

increment cd . The node X(I , I ..Im ) then my have the form
(z u .. mlmlcm 4ie moe general case is handled by
Shastry 1978)]
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pression can be used as a subscript expression for the

variables. The general syntax for subscripted vari-

ables i:

< element of array > ::= < field name >

( <subscript expression>[,<subscript expression>]*

The subscript expressions must be ordered according to the

dimensions. Free subscript variables, as well as other

variables and constants and arithmetic operations may be

used in composing subscript expressions.

A free subscript variable may be global to an entire

specification or local to an assertion. The same _lobal

subscript name in a number of assertions refers to free

subscript variables of the same range. Global subscript

names use the syntax form of FOR EACH. <data name>. -hey

may then have any integer value in the range of the

<number of repetitions> associated with the <data name>.

For instance assertion a5 in Figure 2 can be written using

global subscripts as: COST(FOREACH.INGRP)=PRiCE(FOR EACH.

INGRP)*TOTAL(FOR EACH.INGRP). Use of the same local sub-

script name in different assertions does not imply referring

to free subscript variables of the same range. Local sub-

script names use the syntax form of S[UB]<n>. Using local

subscripts, assertion a5 of Figure 2 could be written as

COST(Sl)=PRICE(Sl)*TOTAL(Sl). Either reoresentation would
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be acceptable. The use of local subscripts is easier

in many cases as the user need not consider the ranges

of dimensions of different data structures. The syntax

of a global subscript name is somewhat awkward and a

shorter global subscript name, such as commonly used

symbols for subscripts, 7,J,K etc, may also be declared.

The syntax for declaring a global subscript name is:

<subs riot names>{AE }SUBSCRIPT (<number of repetitions>)

Subscript expressions are classified into four

types according to use of the following syntactic forms:

1) <free subscript variable>

2) <free subscript variable>-l

3) <free subscript variable>-K, K is integer >1

4) Any form of arithmetic expression except types

1, 2 and 3 above.

The user is advised to give preference to use of subscript

expressions of types 1, 2 and 3, as the version of the

MODEL system reported here analyses the correctness of the

specification and endeavors to obtain efficiency of the

resulting program more thoroughly when these types of

subscript expressions are used.

The subscripting of variables is a complex task that

is difficult for many users. Subscripts may be implicit in

cases which do not lead to ambiguity. Allowing omission of

such subscripts eases the composition of assertions.
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Following are the subscript usages that must be

specified:

1) Subscripts used in subscript expressions of types

2, 3 and 4 (see above).

2) Subscripts of dimensions that are reduced or

added in an assertion (i.e., where an independent variable

has more or less dimensions than the dependent variables).

3) Once a subscript is specified in an assertion

it must be consistently specified with all the variables

in the assertion where the subscript applies.

4) Subscripts on the right of any specified subscripts.

5) Missing local subscripts are assumed inserted in

all va2 iables of an assertion monotonically (i.e., Sl,S2 ...)

from right to left. Subscripts must be specified in

cases where this assumption is not valid.

Subject to these rules, the MODEL system performs

analysis to insert missing subscripts. Thus assertion

aS in Figure 2 is stated as COST=PRICE*TOTAL, omitting the

subscripts altogether. Figures 2 and 3 omit some subscripts

(using global subscripts in Figure 2 and local subscripts

in Figure 3). This will be further discussed below.

Of particular interest in the following are the use

of qualified names and function names in assertions.
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They are first briefly presented and thereafter further

discussed with the aid of our two examples.

Qualified names may be used in assertions, using a

period (.) to connect individual names (similar to PL/1).

The most common use of a qualified name is to eliminate

ambiguity through prefixing a name of a higher level

structure. For instance in the example in Figure 2,

there are three ITEM# variables, in files IN, ITEM,

and OUT. They are unambiguously referred to in asser-

tions al and a3 as IN.ITEM#, ITEM.ITEM# and OUT.ITEM#

respectively.

Another common use of qualified names is to eliminate

ambiguity in data that are updated. The keywords OLD and

NEW are used then. For instance an assertion NEW.PRICE(J)=

'LD.PRICE(J)+INCREMENT would update the PRICE in the ITEM

file in Figure 2. An update of a file is visualized as

creating a new version of the file, which would add a dimen-

sion. :o tne file structure. This is difficult to use, and

use of OLD and NEW kevwords is preferred.

There are narameters of the data structures which 1e-

-end on values of source or target variables. We refer

to these as data parameter variables. Characteristically,

these rarameters nrovide specifications for sizes of arrays,

lengths of character strings, keys for access to files, etc.

-hev ntroduce to MODEL the flexibility of variable size or
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dynamic structures. The syntax of a data parameter

variable is:

<data paramter variable> <reserved keywords>. <variable>

Data parameter variables may be explicitly defined

by assertions. They may denote entire arrays and be used

with subscript expressions in the same way as other vari-

ables. These keywords are listed below and further

discussed in the sequel.

END.<data name> denotes whether the named data
element is the last one in the
range of a dimension.

ENDFILE.<file name> denotes an end-of-file marker
of the named file.

FOUND.<record name> denotes existence of the record
in an index sequential file that
is accessed through a POINTER
variable (see POINTER below).

LENGTH.<field name> denotes length of the named field.

NEXT.<field name> denotes a named variable in the
next adjacent record on the me-
dium source data.

POINTER.<record name> denotes value of a key used to
reference a keyed record in an
index sequential file. (The key
name is identified in the FILE
statement.)

SIZE.<data name> denotes the range of the lowest
order dimension of the repeating
data structure named in the suffix.

These variables are [INT]ERIM , i.e., they are not output,

but are otherwise considered same as target data. Data

*1i
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description statements for these variables may bc

provided optionally. If not provided, each of these

variables will be automatically assigned the aporopriate

dimensionality. These variables are further explained

below.

When the range of a dimension is variable, the range

is viewed as denoted by an auxiliary array variable which

may be defined by an assertion. A variable range data

structure X may have its range denoted by a structure

named SIZE.X, of one dimension less than that of X (the

rightmost) and same ranges of the other dimensions. Thus

if X is m dimensional the elements of SIZE.X have the

values of the ranges of the lowest order dimension of X

for each of the higher order dimensions indices. Thus

Im, the subscript for the m-th dimension of X(Il .... Im_l,

i m) must be in the range 1 - Im <- SIZE.X(II...imI).

consequently if the values of the elements of SIZE.X are

not equal, then X is not a rectangular array but a jagged

edze array. The range must be >- 0.

Another option for defining the size of structure X

is by an auxiliary boolean array named END.X that has

the same dimensions and ranges as X. A 0 value of an element

of X denotes that it is not the last element within the

range of the rightmost dimension, and a 1 denotes that it

is the last element. When END.X is used for range speci-
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fications then the range must be - 1.

For example the ranges associated with INGRP and

INREC in Figure 2 could be denoted by END.INGRP and

END.INREC respectively, The termination of the INGRP

structure in file IN can be determined by an end-of-file

marker at the end of file IN. The definition of

END.INGRP is therefore implicit and the user may omit

defining this variable by an assertion. Alternately,

ENDFILE.IN variable denotes recognition of end-of-file

marker on the file medium, and it could have been used

to define END.INGRP, but as noted above this definition

has been omitted in Vigure 2. a2 in Figure 2 defines

END.INREC. This is further explained below.

POINTER. <record name >, defines an access key to

an index sequential or random access file. The file

ITEM described in lines d6-d9 of Figure 2 is an index

sequential file 7 . POINTER.ITEMREC is a vector with an

element for each instance of INGRP (the FOREACH.INGRP

subscript is implicit and has been cmitted in assertion

a-. Let us represent assertion al by: POINTER.JTEMREC(I)=

EXPR(I). The array of records iTEMREC is considered as

7 The sorting order and file organization can be optionally
provided by the user in the file arguments, which have
been omitted in this paper.

AI
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indexed in the order of the elements of the retrieval keys

POINTER.ITEMREC. Namely, the record retrieved by using

EXPR(I) as a key is considered to be the I-th element in

the array !TEMREC.

Finally, function references can be made to denote an

occrand in assertions. The built-in functions of ?L/"

may be used with the MODEL program generator that produces

PL/1 object programs. There is a subset of the PL/1

built-in functions in the version of the system that

produces Cobol object programs. Additional functions may

be coded in the object language and placed in the system

function library.

Let us now consider in full the examples in Figures

2 and 3. The specification in Figure 2 describes a business

application which processes source sale documents IN to

produce a monthly sales report OUT. The user may designate

IN as source data and OUT as target data in a separate

header section of the specification. Discussion of a

header section has been omitted in this paper. Alternately,

lack of assertions defining the variables in IN would imply

that :r, is a source file, and the existence of defining

assertions implies that OUT is a target file. Lines dl to

d5 describe the IN file as a two dimensional array. Assume

in this soecification that the sales records are sorted by

ITEM# 7 so that all the records with the same ITEM# value

L,
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appear contiguously. Consequently we conveniently view

the file as an array of groups INGRP, each such group

being an array of records with identical ITEM# values.

This o-rouping is conceptual rather than physical. We need

an assertion which determines the range of INREC in-

stances based on comparison of ITEM# values in consecutive

records. Assertion a2 is responsible for this determination.

END.INREC has the same dimensions and ranges as INREC. It

denotes the last element of INREC. The last INREC record

(of an INGRP group) is recognized by the change of the

item number. The ITEM# in a subsequent record is referred

to as NEXT.ITEM#.8

For each !NGRP group we would like to sum all the

sale quantities QUANT associated with a given item. This

is done in a4. The SUM function sums elements along one

dimension of an array. In this case the elements of QUANT

are summed along the second dimension. Note that the sub-

scrIpt for the first dimension is implicit and has been

omitted. The function SUM is referred to as a reduction

function as the number of its dimensions is one less than

the number of dimensions of its argument. We then

3 Note that NEXT.ITEM# may be in the next group and have
an element index 1. rhus, NEXT.:TEM# is not the same
as ITEM# (FOR EACH.!IGRP, FOREACH.i NREC+I).



cal,-ulate the total cost of sales for this item

by multiplying TOTAL by PRICE. However, the PRICE in-

formation resides on an auxiliary index sequential file

ITEM The ITEMREC with the relevant PRICE is referenced

defining the ITEM# field as a key. The fields in an

OUT record are defined in assertions a3-a5.

As noted, the fully subscripted form of assertions

requires writing down long subscript lists for almost

every variable. irn order to alleviate -his chore somewhat

we allow some subscripts to be omitted in Figure 2. This

considerably sim-on.lifies the assertions. The assertions

in lines al to a5, Fi'are 2, use -rlcbal subscripts. The

subscript FOR EACH.IqBR? can be omitted in all assertions.

In al POINTER.ITEMREC denotes the value of a key that

associates an instance of iTEMREC with an instance of INGRP

that has the same value of ITE.M#. POINTER.!EMREC as well

ds INGRP are one dimensional with the FOR EACH.LIGRP subscritt.

Line a! states that the value of the key POI1E..ITE MRE

is equal to the last element of IN.ITEM#.

The interim variables NEXT.ITEM#,PON R.ITMREC and

END.INREC need not be described in the user supplied data

statements. The dimensionality and name of parent nodes

are implied, and higher level nodes are added to account

for increased dimensionality. implied dimensions are

assumed to be virtual.
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An assertion is referred to as a recursive assertion

if the dependent variable is an element of an array and it

depends, directly, or through a chain of assertions, on

other elements of the same array. If the dependent

variable element depends on elements in the same array

with index values that are smaller than the value of the

subscript used in the assertionthen the dependent variable

elements can be evaluated progressively as the value of

the subscript is incremented from 1 to the end of the

range in steps of 1. This condition is checked, and
if it is not satisfied then a warning message is issued

and a Gauss-Seidel iterative procedure is generated to evaluate

'the dependent array variable- elements.

Figure 3 contains a specification that illustrates

the use of recursive assertions and referring

to "historical" data, discussed previously. The variables

of this specification form three structures. The input

file IN, described in statements dl to d3, contains the

integer N which is to be tested for primality. The out-

put file OUT constains an output record for printing the

result which consists of a copy of N and a field DIV.

DIV is a divisor if N is divisible (and hence non prime).

If N is prime then DIV contains the alphabetic string

'PRIME'. The structure INT contains a table J in which

integer products up to N are listed. J is a Jazed



two dimensional array containing the history of croducts.

J is an INTERIM FIELD with two virtual dimensions. The

global subscripts of the array J are FOR EACH.I and

FOREACH.J.

The jagged matrix J is illustrated below for N=15.

FOR EACH.J

FOR-EACH.I 1 2 3 4 5 6 7

1 4 6 8 10 12 14 16

2 9 12 15

Note that only the value J(2,3) = 15 is of interest

for finding DIV = FOR EACH.J+l=3. The array is jagged,

i.e. the range of the second dimension depends on the

value of the first dimension subscript.

Since J is a two dimensional variable range array,

END.J(also two virtual dimensions) and END.I (one virtual

dimension) define the respective ranges. Since we are

only interested in products not exceeding N we term-

inate-the dimension associated w4th 7

natethe~~~ dienio asocaed1t when -,he

value of N is exceeded. This is expressed in assertion

a2. a3 is an example of a recursive assertion. It

defines J. a4 and a5 define the variables DIV and N in

the 'UT file. The assertions, as st ed in izure 3, also
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illustrate use of local subscripts. Following the above

rules, subscripts can be omitted only in assertion al.

I
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3. PEPRESE TATION OF A SPECIFICATION BY A' ARRA A

As noted in the previous sections, much

formation needed for generating a orcxram is ii>

in the MODEL specification, it is therefzree

to perform the analysis to make sich informaXz * -

plicit. As a first ster it is advisatie r

the specification in a convenient form, based >n h -

imolicit information can be derived and enter .,

checks be conducted and finally a schedule of rc--,ra

execution be derived. The conventional approach to

this class of problems has been to use a form of a

directed graph to represent dependencies and other

relations involved in the computation. Similar to

Petri Nets (Petri, 1962: Holt, !60) and Data Flow ra=:hs

(Dennis, 1973), our use of a directed graph is also mair-

ly for the mode nta - -e-endenozs. -owever, -he

strai:h , f rwa _ 'ih --- i ar7r n

which each 7o7uta- - r-esened

by a node is "' un --- r 7".. . r.' e-ennts

in an a rr r n , .- - "-1 -.

and seo ,-4-. ,

h uge u-nmanaz--e Ll - : .. -

a new . :',- - -.

agre:ate are o:''"
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represent potential processing steps associated with

accessing and evaluating array variables. This means

that each data structure and each equation (explicit and

implicit) are represented by a node. This also means that

each statement is represented by a node. When a file

statement is designated (implicitly or explicitly) as

both source and target data (where a file is updated) then

separate nodes represent the source data and the target

data. There are also nodes for the data parameter

variables.

Each node is potentially compound, namely each

represents the instances of the data structure or equation

for all the array elements 1 to N. Information on dimen-

sionality and range must therefore be associated with the

nodes in the array graph. A node that corresponds to a

data structure has associated with it subscripts that corres-

pond to its dimensions. A node that represents an assertion

(i.e. equation) has associated with it subscripts that cor-

responding to the union of subscripts of the variables

appearing in the equation. Thus a compound m dimensional

node A represents the elements from A(l,l,...l) to

A(N,N 2. . .N m ) where NI...N m are the ranges of dimensions

1 to m respectively.

Similarly a directed edge may be compound in that it

represents all the instances of dependencies among the
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array elements of the nodes at the ends of the edge.

These dependencies imply precedence relationships in

the execution of the respective implied actions. There

are several types of dependencies or precedences. For

example, a Hierarchial (H) rrecedence refers to the need

to access a source structure before its 2orponents can be

accessed or, vice versa, the need to evaluate the com-

ponents before a structure is stored away. Data dependency(D)

precedence refers to the need to evaluate the independent

variables of an equation before the dependent variable can

be evaluated. Similarily, Data Parameters(?) precedence re-

fers to the need to evaluate the data parameters of a

structure (range, length, etc.) before evaluating the

structure. Five such types of precedence relationships

that are represented by directed edges in the array

graph, are described more precisely in Table 1. These

edges are determined based on the analysis of the in-

formation in statements associated with the respective

end nodes. Since each edge may be compound it is

necessary to associate with it information on dimen-

sionality and ranges.

An array graph AG is then a pair (N,E) where N is

a set of compound nodes and E is a set of compound edges.

The array graph AG=(N,E) represents an underlying graoh
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1) Hierarchical (H): between a data node and its

descendants in the data structure tree. For source data

a node precedes its descendants; the opposite holds for

target data.

2) Data Deoendency (D): between an assertion node

and its variable nodes. The independent variable nodes

precede the assertion node which precedes the dependent

variable node.

3) Data Parameters (P): between a data parameter

variable node using keyword prefixes FOUND, END, ENDFILE,

LENGTH, NEXT, POINTER and SIZE and the data node which

is its subject (named in the suffix). For END, ENDFILE,

SIZE, LENGTH, POINTER and SIZE keywords the data para-

meter node precedes the subject data node and vice versa

for the POUND and NEXT keywords.

4) Medium Order (M): between two sibling data nodes

which are on an external file, reflecting the order of

position of data on the file medium.

5) Virtual (V): Where the range of a dimension is

denoted by an *, access to the i-nth element of a virtual

dimension must precede access to the I th element. Thus,

wherever there is a precedence relationship of types D

or H between predecessor and successor nodes with a

virt:al dimension, there is also an eide in the reverse

directin .labeled wi'h the subscrint exoression-type

7-1" 7,r eah virtual subscrirt used In these nodes.

Table I Edge Types 4
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UG=(NuE u ) which is a conventional directed graph where

each instance of an element of an array is represented by a

node and each instance of dependency is represented by an

edge. The underlying graph UG is defined in terms of the

array graph AG as follows. The nodes Nu of UG are :

Nu={A(I,12 ... In ) I l'Il_ Nll,l_12<_Nl2,...where A(II,!2,...n),EN1

The edges in the underlying graph are between underlying

graph nodes where the corresponding common subscripts have the

same value. Let A-B be an edge E in the array graph AG,

where A and B have ccmmon and different subscripts. Let the

subscripts !Il,...in, be common to both nodes, while the

subscripts F1. F2,...Fk are exclusive to the A array and

subscripts G1 , G2,...Gm, are exclusive to the array B.

The order of the subscripts of A and the subscripts of B is

determined in the array graph AG. The underlying graph

edges Eu which correspond to the array graph edge A-B are:

Eu={A(approD. ordered I and F subscripts)-B(approp. ordered

i and G subscripts)

.Ii <--NG 1 ,1 2 <N 1 2 • .

Where A-BEE}

Note that if there are no subscripts which are common to

both A and B then the edges in the underlying graph are from

every element of B to every element of A.

oL
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Two array graphs for the examples of Figures 2 and 3

are illustrated in Figures 4 and 5, respectively. Each array

data node is represented by a dot labelled by the variable

name and by its repetition specification, if it is a repeating

structure. The graphs include nodes added by the system to

reflect the dimensionality of data parameter variables. The

asscrtions are represented by circles labelled by the assertion

line number. Array edges are labelled by the edge type.

However, in order not to clutter the diagrams excessively,

V type edges are shown only in Figure 4, for only one cf the

virtual dimensions.

The data structures and assertions are stored by the

MODEL processor in a simulated associative memory that facili-

tates search of a statement by variable names and keywords.

A node directory is created basel on the statements. The

Hierarchical (H) and Medium (M) type edges are created first,

followed by the Data Dependency (D).
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edges and Data ?arameters(P) edges. Virtual type (V)

edges are constructed during a later analysis phase.

Later analysis may also indicate the need for additional

nodes and edges. Data structures associated with

nodes and edges are constructed at the time that the

edges are created, but the values of some of the variables

in these structures are determined later during the

analysis phase. These data structures are presented in

Tables 2-5 and will be referenced further in the discus-

sion of the analysis of the array graph and the design of

the corresponding program.

The array graph is represented by three data struc-

tures:

1) A node directory with a unique node number for

each assertion and data (array) variable.

2) A node table - An entry for each node consists

of the attributes associated with each node shown in

Table 2 and attributes of the subscripts of the node

shown in Table 3.

3) An edge table - consisting of the attributes

associated with an edge shown in Table 4, and attributes

of the subscripts of the edge shown in Table 5. Each

edge structure constitutes an element in the two edge

lists attributed respectively to the predecessor and

successor nodes.
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1. Node number and name

2. Node type: datalassertion.

3. If a node repeats: 3.1 Physicallvirtual dimension.

3.2 Range definition, if defined

directly:

1variable(S1ZE/END arrays)

declared (subscript)

Iimplicit (end of file marker)

3.3 Node number of range specifica-

tion if defined indirectly.

4. Apparent number of dimensions(D)

5. Local subscript list for subscripts associated with the

node (see Table 3); ordered by dimension number (from

left to right)

6. Sucessor Edges list

7. Predecessor Edges list

Table 2: Attributes Of A Node Structure

JI
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1. Position (dimension) number in node.

2. Is dimension reduced? Is there a reduction on that

subscript (applicable only to assertion nodes)

3. Subscript form: FOR EACH.YISUB<n>jdeclared.

4. Node number of subscript declaration. (Each subscript

declaration has its own node number)

5. Node number where range is defined directly.

6. Nesting level (if implemented by a nested loop).

Table 3: Attributes of an Entry in a 7ccal Subscript

L item 5)List of A Node. (see Table 2,
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.. Edge type HIDIPNIjV

2. Difference in number of dimensions between

predecessor (p) and successor (s) nodes (5).

3. Predecessor node number.

4. Successor node number

5. List of subscripts associated with the edge

(see Table 5), ordered by position number in

predecessor node.

Table 4: Attributes of an Edge s D,

1. Local subscript position number in predecessor's node.

2. Local subscript position number in successor's node,

3. Subscript expression type: ll-I1-Kjor other,

(I-subscript, K > 1).

Table 5: Attributes of an Entry in a Subscript
List Associated with an Edge
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4. ERROR DETTECTON AND CORE ON OF A SPECIFICATION

4.1 introduction

it is to be expected that a newly composed speci-

fication would contain ambiguities, imcompletenesses

and inconsistencies, especially when the composer of the

specification is not proficient in mathematics or pro-

gramming. Since the system does not possess knowledge

of the application, the automatic error detection and

correction processes must depend only on the analysis

of the inherent logic of the specification.

The program that is to be produced may be con-

sidered as transforming multi-imensiona! data arrays

into data arrays having the same or different numbers

and ranges of dimensions. This requires compatibility

of dimensionality and variables subscripting in asser-

tions. If errors are found, we can do either of two

things: correct the specification and warn the user,
or aternately,

or, altraey renort an error and solicit a

correction from the user. in either case the ex-

clanation of the oroblem discovered must be presented

in terms of the nonprocedural specification and not

in the procedural ..ters of the program that is bCein

oroduced. We prefer to make corrections whenever

reasonacle and advise the user of such corrections as

this facilitates explaining the problem that has been
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detected. We realize that this aporoach is controversial

in that designers of recent language processors frown on

amending programs by default since this contradicts the

notion of exnlicitness. :n our case the warn-n-s sent to

the user emphasize and clarify the formalism that is being

used.

Three general types of errors that may be detected and

sometimes corrected are discussed here. Ambiguities arise

from assigning the same name to several data structures.

Recognition and correction of data name ambiguity is dis-

cussed in Section 4.2. 7ncomoletenesses due to missing def-

initions for some of the variables are discussed in Section

V- 4.3.9 Inconsistencies arise when the assertions or defini-

tions contradict themselves or one another due to incomzati-

bie dimensionality, rengs, subscripts,, or due to .irc~ar ! e.-.

inconsistencies can be identified in a three stec zrocess.

The first step, dimension propagation, traces the array grach

in order to determine consistent dimensionality of the nodes.

Conflicts in dimensionality are either resolved or reported as

errors. Dimension propagation is discussed in Section 4.4.

Section .5 discusses the insertion of subscripts in assertions

where they have been omitted. The last step, range :ropagation

9 Shastry 1!97,) discusses extension of the completeness
analysis toc verifying that every element o f an array i s
defined.
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ccie statement that precedes it

an is nearest to it in the order of composition of

statements is selected as the assumed rarent. Thus, for

instance, in Figure 2 there are three data statements

with an ITEM#. Following the order of statements it is

*ossible to determine the parent of each. Otherwise it

would have been necessary to use qualified names also

in the data statements.

At the end of construction of H-type edges, any

ambiguously named data which is not linked to a parent,

is assumed redundant and is deleted.

4.3 Incomoleteness

Tncompleteness is the apparent omission of struc-

tures or assertions. If all the data and assertion

arrays are defined then the array graph would be "complete"

in the sense that an edge terminates and an edge originates

at each node, except in the following special cases:

1) Source file statements and assertions that

define variables by constants do not have

edges that terminate at these nodes.

2) The nodes that represent target files do not

have edges that originate at these nodes.

3) Some source field nodes may have no edges that

originate at the nodes. in this case, the

particular source data name is not used in an



assertion to define any other data and is

only included for the complete Specification

of the data structure.

If the above completeness criteria are not satis-

fied, an appropriate data description statement or an

assertion may be generated according to the following

rules:

1) If the node under consideration represents a

record, group or field of data, and the parent

-or That data name has been omitted by the user,

then a parent data statement is generated. The

array graph is also updated to include the

parent-descendant relationship resulting from the

generated statement. This allows a user to

omit parent data statements especially in

INTERIM data. Thus, for instance, in Figure 3

it is possible to omit the statements for T'T

and J (lines d8 and d9) and equivalent sta:e-

ments (using different names) would be gen-

erated by the processor.

2) if the node under consideration represents a

target data field name, and, if no edge termin-

ates at the node, then an assertion may be

,generated as follows: f there exists a sour'

data, with the same name then we assume that

.. ... .. . .. . .. . . .w oo l" ... 1...
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this source is to be copied into the

identically named target variable. For ex-

ample, if assertion a5 in Figure 3 was omitted,

the assertion OUT.N = IN.N would be automatic-

ally added. All corrections are reported to

the user in warning messages.

4.4 Dimension Propagation

Assertions generally transform multi-dimensional arrays,

where the dimensionality of the arrays is indicated by the

user through subscripting. However, as noted, some subscripts

may be omitted by the user and are considered implicit.

Furthermore the dimensionality of arrays implied in assertions

must correspond to the dimensionality of those arrays

specified in the respective data descriptions. itf the declared

number of dimensions of the data structure is too small

then additional data statements are generated, otherwise

an error message is sent.

The process of evaluating the number of dimensions

of each node is performed in two steps. In the first

step each edge is considered locally in order to evaluate

1) the difference (6) between the numbers of dimensions

of its predecessor (p) and successor (s) nodes 'see

Table 4, item 2), and 2) an apparent (initial) number

of dimensions (D) of these nodes (see Table 2, item 4).
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This step is performed during the construction of the

edges of the array graph. The second step checks de-

clared and apparent dimensionality of independent and

dependent variables of each assertion and iteratively

modifies the apparent number of dimensions until there is

consistency of dimensionality throughout the array graph

or an error is noted.

The evaluation of 6 and D in the first step is as

follows:

For type H edges:

for source data, if the successor (s) is a reweat4 ng

data then 5=1, else 5=0;

for target data, if the predecessor(p) repeats then

S=-1, else 6=0.

D for data nodes is the number of dimensions as

derived from analysis of the structure's data descrition.

If the structure is not described, then D=O.

For type D edges (that originate or terminate at

assertion nodes), the evaluation of 6 and D is based

entirely on the respective assertion as given by the user,

and is independent of the dimensionality of its independent

and dependent variables as specified in the respective

data statements.

Consider a user provided assertion, a, with an in-

dependent variable X and a dependent variable Y.
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a: Y(!k, .... Il)=function(X(Ib .... a .Jl)).

The I subscripts are distinct from the J subscripts.

fIa .... Ib I are subset of iIl .... IkI. Then the apparent

dimensionality of a, D(a) = k+m. For the edge a-X,

S=k-(number of subscript in I .... b) For the edge Y-a,

S=-m. The evaluation of S(a-X) and S(Y*-a) does not take

into consideration the declared dimensionality of X and Y,

respectively, but is derived only from the assertions.

To illustrate the above let

a: IF i = 2 THEN Y = X(1);

D(a)=l, "hen S(a-X) = 0 and 6(Y-a) =-l

or if

a: Y(I,J)SSUM(X(K,J),X);

D(a)=3, then d(a-X)=l, S(Y-a)=-l.

For edges of type P 6=0, except in the case of P type

edges SIZE.X-X 6=1, as the SIZE.X array is always of one

dimension less than X.

The second step consists of repeated propagation of

the dimensions throughout the array graph both forward

and backward until either consistency is attained or an

error is indicated. P'ropagation means that the

number of dimensions of the node at one end of an edge is defined

as ecual to the number of dimensions of the node at the

other end ,lus (minus, if backward propagated) 6. The

direction of the propagation depends on the type of the
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edge. The repeated propagations may either:

case a: converge-indicating consistency of dimen-

sionality.

case b: diverge-with increasing number of dLmensions of

a node with each repeated propagation, until a

bound is exceeded. This implies an error in di-

mensionality in some recursive assertion(s).

case c: the number of dimensions computed exceeds the

number of dimensions of a declared output

file. This implies an error either in data

description or related assertions.

A simplified presentation of the algorithm is as

follows. LeCt (n) represent the current numrber of Jiensicns :

node n. D(n) represents the initial (apparent) number of

dimensions of node n. Let N denote the set of nodes and

the set of edges of the graph.

1. For all nodes neN let C(n)-D(n)

2. Repeat propagation of all edges until either:

case a: there is no change in C(n) for all nEN,

or case b : any C(n), ncN, exceeds a threshold (say 20)

(error message),

or case c: for any data node which is not an interim

variable or a field in a keyed file,

C(n)>D(n) (error message),

Repeat for each edge eEE: s4p
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Propagate Forward:

(i) for H and D type edges,

(ii) for P edges.. terminating in ENDFILE,

FOUND and NEXT prefixed data names,

(iii) for P edges emanating from POINTER

prefixed data name

if C(p)+6>C(s) then let C(s)=C(p)+6

Propagate Backward:

for P type edges emanating from END,

LENGTH and SIZE prefixed data name

if C(s)-S>C(p) then let C(p)=C(s)-6

3. Repeat for all neN

if n is an apex node of an interim

structure, including keyword prefixed

names, then generate statements that

add C(n) dimensions to the structure.

4. Let D(n)-C(n)

4.5 Filling Subscripts

At this point a consistent number of dimensions for

each node (D, Table 2, item 4) has been determined. Also

all the missing data statements have been generated. There

remains the triple task of inserting:

1) entries for missing dimensions and subscripts in

the local subscript list of respective nodes

(see Table 3).
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2) local subscripts in positions of missing sub-

scripts in assertions.

3) entries for missing subscripts in the subscript

lists of respective edges.

The addition of subscripts in node structures is as

follows:

For data nodes the global form of subscripts FOR

EACH.X is used (Table 3, item 3). The subscripts are in the

order of orecedence in the respective data tree. For

assertion nodes the local form of subscripts (S<n> or

SUB<n>) is used (Table 3, item 3). The subscripts asso-

ciated with an assertion node are ordered in accordance

with the dimensions of the target variable followed by

?7v reduced subscripts.

Local subscripts are inserted in the assertions.

Subscripts are added from right to left (Sl, S2, etc.),

until all the dimension positions are filled. For ex-

ample assertion a4 in Figure 2:

TOTAL = SUM(QUAT(FOR.EACH.IREC), FOREACH.INREC)

would be modified to:

TOTAL (SI)=SUM(QUANT(S!, FOREACH.INREC), FOREACH.INREC).

As TOTAL is one dimensional and QUANT is two dimensional,

SI has been added to both on the left side.

Finally, edge subscript structures (Table 5) are added

to the edges emanating from the nodes where subscripts were

added.

L o.'. .
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4.6 Range Propagation

A range of a dimension of a node (data or assertion)

may be specified directly in statements associated with the

node or indirectly through range propagation. There are

four ways to define a range of a dimension directly (see

item 3.2 in Table 2)

I) Fixed: through specifying an integer number of

repetitions of the respective data statement.

2) Variable: Through defining an array with the

SIZE or END prefix names and the node name as

suffix.

3) Declared: throbuVgh a data statement of a sub-

script name, including the number of repetitions.

4) Implicit: through end-of-file marker of a source

sequential file.

It would be cumbersome for the user to define the range

of each dimension of each node. Therefore, in the absence

of a range specification for a dimension of a variable, the

assertions where the variable is used are analyzed for im-

plication of the range. For example, the assertion XI m . ..7

-Y(Im...Il) may imply that the anges of the dimensions in X

and Y referred to by the same subscript name are the same.

This is referred to as range propagation. The range in this

case is defined indirectly through propagation of the range

from another data node. If a range is specified indirectly,
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then the node number where the respective range is

defined directly is given in the node structure (as

shown in Table 2, item 3.3).

The function of the range pronagation process is to

determine the range sets, namely the sets of nodes and

respective positions that have a common range definiticn.

Consider an edge e: s-p. The correspondence of

respective dimensions in nodes p and s is ilven i, the

subscript entries associat ed withthe edge e (see Table

...... -±tem'-1and 2). For subscript expression of types

L1, and 3 (I, >1 or I-K, see Table 5, item 5) and _' the

absence of contradictory range specifications, the indi-

cated corresoonding subscripts in p and s are assumed to

have the same range and be members of a corresponding

range set. By repeated propagations, a range set is de-

termined, consisting of node-number and position-

number pairs which have only one common range specifi-

cation. Note that the range is not propagated where a

subscript expression is of type 4 (i.e. constant or any

other form differing from types 1,2 and 3). f there are

more than one same range specification for a range set

then the specifications are redundant and all but one

could be deleted or disregarded, and a warning message

issued. It there is no range specification then an error

message is issued.

...L .... ....- -, , , , --rr. .....| ... ., | l m .,. . .. . 1
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The examples in Figures 4 and 5 amply illustrate

range propagation. For example, in Figure 4 the

second dimension of INREC is specified directly by an

assertion defining END.INREC. This range is propagated

through H and D type edges to the second dimension of

iTE I#, UANT,, al,-a2 -a, NE-XT.INREC, NEXT. ITEMI# and

END.INREC. Requiring the user to provide range specifi-

cations for all these nodes would have been unacceptably

tedious.

The algorithm for performing the range propagation

follows:

1. Determine the nodes with direct range specifi-

cations: Place all node-dimensions where the range soeci-

fication is direct on a list L.

2. Propagate range of dimensions: For each node in

L, the specified range is propagated forward through

emanatino series of edges and backward through the termin-

ating series of edges until the appropriate dimension is

found to be reduced or a conflicting directly specified

range is encountered. The node number and dimension

number of each traversed node is entered into a range

set corresponding to the specified range in the node in L.

in tracing the edges, if a traversed node is a data node

where the range-propagated dimension is declared as re-

peating (in the corresponding data statement) but the range
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is defined indirectly, then the node number of the

starting node in L is entered in item 3.3, Table 2.

L 3. issue error message: Determine all data nodes

where the rightmost dimension is defined as repeating

Ssee item 3.1, Table 2) but the range is undefined

(item 3.3, Table 2) and re ort them as missing soec 'i-

cations of number of repetitions.

The V type edges are constructed while the virtual

imensions ranges are propagated. There would be a V

type edge in the reverse direction for each virtual

subscript associated with H or D type edges, and for P

type edges emanating from a POiNTER prefixed data names.

The subscript expression of type 2 (I-l) is associated

with the virtual subscript of a V type edge (see Table

5, item 3) to denote precedence of the previous element.

- j-.......
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5. FLOWCHART DESIGN

At this point in the compilation orocess, the

specification is assumed to be complete, nornamb,:-s a..

consistent. The next step is he7 o oroduce a flowchart

of the actios-ob t e* taken by the program. The flowchart

is an intermediate, object language independent, skeletal

representation of the program. Recall that the nodes of

the array graph represent accessing and computing actionsand
.1-

the edges indicate necessary precedence requirements

between actions represented by nodes. The flowchart is

essentially a linear arrangement of nodes according to

the partial order imposed by the edges. The final code-

7generation phase of the processor (not described in this

paper) essentially translates individual entries in the

flowchart into blocks of code in the object language

(presently PL/l or Cobol).

There are two special interdependent problems that

must be coped with in cenerating a flowchart. First, the

array graph may contain cycles which prevent ordering

the nodes in accordance with the edges. A maximally

strongly connected component (MSCC) results from cycles

in the array graph. Such cycles are illustrated in Figures

4 and 5. The V tyre edzes create an r;ISCC ionsist 4 of all

the nodes that have a virtual dimension. ? tyre edges
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emanating from the ''.... and . nodes an;

cursive assertion a3 also create rcjes in thq--,'r

A set of simultanous equations also forms a MSCC.

Secondly, each node represents an array of data or

equations and it is necessary to assure that all the

elements are individually accessed and evaluated. Con-

sider the simple example of a single node consisting of

assertion a:

A(I1 ~ n. . n ) = f ( B ( !
a . .. I b . ,J , Jm )

The i and j subscripts are distinct. Ia .... Ib is a sub-

set of I Assume that Cond.I-_...Cond.I recognize

the last elements in "he ranges . .. J. - evaluate

all the elements of assertion a it may be bracketed by

iteration statements for all it's subscrirts. :he

elements will then be evaluated while nroo-ressive-v

varying the indices in each- dmension from 1 t'he last

ee-ment, as follows:
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do i, while cond. 1.
L±

do .7nwhile cond.In;

do J, while cond.JT ;

do Jm while cofld.JM;

a;

endJM

end l

end in;

end TI;
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Much of this section is concerned with analysis related to

the above two nroblems.

The general approach to scheduling consists of crea-

ting a component graph which consists of all the MSCCs in

the array graph and the edges connecting the MSCCs. The

component graph is therefore an acyclic directed grach.

it is then tooologica!!y sorted, result ln in a linear

arrangement of the components which can be regarded as

a zross level representation of the flowchart. The sub-

scriuts for each component are determined and appropriate

iterations for these subscripts bracket the respective

components. Finally each component is analyzed in greater

dezth to determine a suitable method for its evaluation.

We essentially employ two methods for scheduling the

evaluation of a MSCC. In the first mezhod an attempt is

made to decompose the MSCC by deleting approrlate edges.

Consider the simple example of a two node MSCC consisting

of a one dimensional array X and the assertion a: X(I) =

V~I-1)+l. I is a subcript common to both nodes and 'I Is the

range f I Therefor e the schedule would be:

do I from 1 to N

MSCC consisting of nodes a and X

end I
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The edge a-X has associated with it a subscript ! of type

2 (1-1). It indicates that evaluation of the I-i th ele-

ment of X must precede the evaluation of the I th element.

But this is already assured by the order of iterations for

I from 1 to N. Therefore this edge may be deleted, which

may cause decomposition of the MSCC and allow for its

scheduling. More generally, to decompose a multi-node MSCC

it is necessary to:

1) Find a dimension and position in each node of zhe

MSCC which all have a common range that can be given

a corresponding common subscript name.to use in an

iteration statement that brackets the entire block

of nodes that constitutes the MSCC.

2) Find edges that represent dependencies on lower in-

dex elements of the selected subscript; these edges

are deleted and may cause decomposition of the com-

ponent.

For complex MSCCs the decomposition and scheduling may

be performed recursively until all the cycles are opened.

If no suitable subscript is found or if no edge can be

deleted, then the user is advised of this and an iterative

solution method is employed, typically the Gauss Seidel

method. For instance, consider an MSCC consisting of the

scalars X and Y and the two assertions X= aY+b; Y=cX+d.

1o decomposition of the MSCC is feasible in this case

The processor therefore incorporates in the
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program an iterative method to solve these equations. The

user then must check the convergence of the solution. The

part of the MODEL language for this task has been omitted

in this paper.

At the end of the scheduling process, an optimization

process further attempts to consolidate adjacent blocks

of nodes which are iterated over the same range. This in-

creases the scope of the iteration and improves the effi-

ciency of the resulting program.

The SCHEDULING procedure consists of two procedures,

SCHEDULE-GRAPH and SCHEDULE-COMPONENT, which are mutually

recursive.

SCHEDULE-GRAPH finds the MSCCs and topologically sorts

the component graph. it is given two arguments: 1) the

graph to be scheduled (g), and 2) the level of the recur-

sive call (Z) corresponding also to the level of iteration

loop nesting. It returns a schedule of the nodes of the

graph, (sI....Sn).

SCHEDULE-COMPONENT analyses and decomposes an MSCC.

it is given two arguments: 1) a MSCC (gi) to be decomposed

and 2) the level of recursion (Z). It returns a block of

n-odes bracketed by the iteration parameters and the level of

nesting of the iteration.

SCHEDULING is initiated by calling SCHEDULE-GRAPH

with the arguments: g, being the entire array graph,
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and Z=O.

The algorithm of SCHEDULEGRAPH is as follows:

1. Find all the MSCCs. This is done using the

depth first search algorithm (Tarjan, 1972).

2. Sort topologically the MSCCs into a linear order

3. Remove edges in g between gi and gj, ij: ij.

This deletes the edges connecting MSCCs. Such edges are

not needed further.

4) Repeat for each gi, i1 to m

si = SCHEDCOMPONENT(gi, Z).s i is the ith comronent (single

or multi node) in the flowchart. This calls the

SCHEDCOMPONENT process for each component.

5) Return the flowchart sl ...s m . This constitutes

the final result.

The algorithm of SCHEDCOMPONENT is as follows.

1. Determine candidates for subscripts for bracket-

ing the component: the smallest set of available dimen-

sions in gi is determined. These are the dimensions of

a node in gi which has the smallest number of dimensions

which also have not been selected previously (for smaller

values of Z). Let the selected node be M. Let m= number

of available subscripts in M.

2) Return a single node as a schedule element: if

m-o and the number of nodes in gil then return gi as a
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schedule element. si=g i :

3) Report a non-decomposable MSCC: if m=o (no available

subscripts) and the number of nodes in gi>! (i.e. a multi node

MSCC) then this is a non-decomposable cycle in the graph.

There are several possible causes of a non-decomposable MSCC

as follows:

1) if the MSCC contains V type edges then this indicates

that it is not feasible to implement the user specifi-

cation of the corresponding virtual dimension. The

respective dimension must then be changed to a physical

dimension.

2) if the MSCC contains at least one edge of types H,? or

M, then there is a mathematical inconsistency caused by

circular logic or incompatibility in dimensionality or

subscripting. This is considered a user error.

3) if all the edges in the MSCC are of D type, and the

number of assertion nodes in the MSCC equals or ex-

ceeds the nunber of data nodes then the problem may

be due to simultaneous equations or because the de-

pendencies of elements of the arrays are not in des-

cending order of element index values. This then

suggests that an iterative solution, such as the

Gauss Seidel method, is called for. gi is altered

to form a 7raoh ccrrespondinz to such Pn itera-

tive solution procedure and ster 8 is executed next.
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The descrintion of zeneratinF an itera-

t ve-solution orocedure is beyond the scooe

of this paper (Gan&, 1978). essages are issued

identifying the nodes in the MSCC and the in-

dicated problem.

a) Select a common range (and subscript) for an

iteration to bracket the nodes in the MSCC:

Starting with M, repeatedly propagate the range

for each of the available dimensions (similar

to the range propagation in Section 4) until a

chain of same range dimensions (a range set) is

found where the range is propagated to only one

dimension of every node in gi. Available dimen-

sions that do not satisfy this condition are

marked as not available.

5) Name the selected subscript: The highest order subscript

of M which satisfies the above criteria is

selected and a subscript name is associated with

it. The selected subscript is noted as un-

available. A selected subscript range must not

depend on yez unselected subscripts. Also

virtual subscripts of sequential files must be

selected in the order of dimension positions. An

error message is issued if these conditions are not

satisfied indicating an inconsistency in subscrip-
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ting.

6 Remove edges: All edges of expression types

2 and 3 (1-1, I-K) of the selected subscript are

deleted from the MSCC gi.

7 Enter the value of z and the selected subscript

name in subscript entries of the nodes in i (see

Table 3, item 6).

8 s i = SCHEDULEDRAPH(gi, Z+!). This returns the

decomposed MSCC for a recursion of scheduling.

9 Bracket the schedule returned by SCHEDULE GRAPH"

The returned schedule consists of, one or several elements.

A block is formed by bracketing these elements within

an iteration for the selected subscript, if any.

10) Return the bracketed block as a schedule element.

After obtaining a schedule for the array graph, the

further OPTIMIZATION procedure endeavors progressively to

enlarge the scone of iterations and thereby attain a more

efficient program. The algorithm of OPTIMIZATION consists of

progressively evaluating adjacent blocks in the schedule as

candidates for consolidation. The condition for consolida-

ting adjacent blocks A and B are:

1) The ranges of the iterations that bracket the

blocks A and B are the same.

2) The dimensional positions of the same range di-

mensions in the independent variables (rhs) of
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the nodes in A are the same as the dependent

variables (lhs) of the nodes in B. This con-

dition checks for instance that block B does not denend on a

transposed array which is defined in A, in which

case blocks A and B cannot be within the scope of

a single iteration for the respective subscripts.

The above algorithms are illustrated in the flow-

charts in Figures 6 and 7 for the examples in Figures

4 and 5 respectively. The initial topological sorting of

the MSCCs in the graph of Figure 4 by SCHEDULE GRAPH re-

sults in the ordered list of 8 components. These com-

ponents are listed on the following lines of Figure 6:

1,2,3, a MSCC for Z=l: lines 5-25, 27, 28, 29, 30.

SCHEDULECOMPqNENT is then called for each of these com-

ponents. For the first three components, and later for the

last four, m=0 and therefore they are reported as schedule

elements. The next component (shown in lines 5-25) is a

MSCC including all the V type edges for the virtual sub-

script FOREACH.INGRP. The global subscript FOREACH. F

is selected as an iteration parameter. The MSCC " )2ack_,ed

by iteration statements for FOREACH.INGRP and all the edges

with subscript expressions of FOR EACH.INGRP of types 2 and 3

are deleted. The V type edges for FOREACH.INGRP have a sub-

script expression of tyr e 2 and are therefore de1eted. SCHEDULE

OMMFOIENT then calls S.CHEDULE. GRAPH recusively to sehedule the sub-



1 ITEM
2 ADDED NODE BELOW ITEM
3 IN
4 ITERATION4: FOREACH.INGRP UNTIL En.D OF FILE.IN
5 IN..INGRiP
6 ITERATION: FOREACH.INRrC UNTIL END.INREC

2sc IN. ITETI
FOEcH.I E 8  

IN.QUANTF R -A H I R C 9 a 4sa mD 10 NEXT.IN.ITE1lf

11 a.2
-12 END.INREC
13 al.

14 END INTERATION: FOREACH.1NREC
15 POINTER.ITEIMREC
16 ITEXREC

18 a3
zxsc =1 19 OUT.ITEM~r

FOR EACH. rGR90 20 ADDED NODE ABOVE END.INREC

SELECTED 21 OUT.TOTAL
22 as
23 OT3T.COST
24 OUTIREC

1'25 ADDED NODE ABOVE NZXT..ZN.ITEMAX
26 END ITERATION: FOR EACE.1 NREC
27 ADDED NODE 2ND LEVEL ABOVI: ZXD.ZNREC
28 OUT
29 ADDED NODE ABOVE POINTZR.:r.RZC
30 ADDED NODE 2ND LEVEL ABOVE NEXT.IN.ITEf!

Figum-- 6. Flowchart Generated For The Example In Figure 2
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1. IN'
2 INREC
3 IN.N
4 as
5 OUT.N

.--.6 ITERATION: FOR EACH.I UNTIL END.°
_ ITERATION: FOREACH.J UNTIL END.J
8 a3

MSCC £=2 9 1
FOR EACH.J 10 a2

SELE-- 11 al
12 END. J
13 a4
14 t Qz UY E ATIOU: FOR EACH.°

SCC t£1 15 I

FOR-ACH.I 16 END.1
_SECTED 17 NODE ADDED ABOVE END.J

148 END OF ITERATION: FOR EACH.I
19 INT
20 NODE ADDED ABOVE END.Z
21 DIV
22 OUTREC
23 OUT
24 NODE ADDED 2ND LEVEL ABOVE END.J.

Figure 7 Flowchart Generar e-dTcr The Example In Figure 3
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graph of the MSCC with the deleted edges. SCHEDULE GRAPH

topologically orders the components of the new subgraph.

This results in 5 components shown on lines: 5, a MSCC

for Z=2 lines 8-13,15,16 and 17. SCHEDULE GRAPH further

calls SCHEDULECOMPONENT for each of these components, now

with Z=2. For each iteration nesting level there are

further recursive calls on SCHEDULE GRAPH and SCHEDULE

COMPONENT until all respective MSCCs are decomposed into

single node schedule elements.

A similar process would produce the flowchart of

Figure 7 based on the array graph of Figure 5.

/
/

/

./

A

L/
L/
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S. CONCLUSION

As stated in the introduction, the goal of the MODEL

project has been the development of a nonprocedural language

system with the characteristics of 1) automatic handling

of all inputloutput act__-ties, 2) global checking of

cmle zene ss and cons--te.: is -c __ ii -- A. sn own,

these zhree characteris-ocs are -nutualv scpportive in

achieving a practical and usefu system.

This article is in a sense a progress report, although

the development has been underway for the past 5 years. The

presently described algorithms represent an approach to

a system that is tolerant of many types of users' ambiguities,

incompletenesses and inconsistencies, and, at the same time,

exolicitly reports the semantics of the interpretation of

the program specification to the user.

The two features, speedier program development and global

logical checking, would make possible some new applications

of computers, especially where a large number of programs

are required quickly and inexpensively or where exens:ve

debugging based on running the programs is normally needed.

ye had some experience with the former situation in a Drcoect

where many business oriented programs had to be developed

and given to key companies so than they could generate

formatted reports for the internal Revenue Service based on

their own diverse and private data bases (Prywes, 1977).

We are currently investigating a significantly different

application where the system would be used in online economic
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forecasting (Gana, 1978). The concept in this case is that

global checking and correction of the specification would

reduce the amount of debugging presently being experienced in

economic modelling and forecasting and that very large models

(up to 20,000 equations) could be executed much more efficient-

ly than with the interpretive economic modelling systems. This

type of application requires extensions in three main areas,

on which research is proceeding. These are: 1) numerical

solution of simultaneous equations, 2) extending the language

to allow matrix algebra equations and, generally, operations

on high level data structures and 3) modularization of a MODEL

specification so that submodule programs may be independently

generated and executed in distributed computers.

Another area of research concerns optimizaticn of

memorv-in -he orod-uced programs and, in particular, deter-

mining automatically which dimensions may be considered virtual,

in tne sense of this article.
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